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Abstract
Motivated by the recent experimental observation of long range ferromagnetic
order at a relatively high temperature of 200 K in the Fe-doped ZnGa2O4

semiconducting spinel, we propose a possible mechanism for the observed
ferromagnetism in this system. We show, supported by band-structure
calculations, how a model similar to the double-exchange model can be written
down for this system and calculate the ground state phase diagram for the two
cases where Fe is doped either at the tetrahedral position or at the octahedral
position. We find that in both cases such a model can account for a stable
ferromagnetic phase in a wide range of parameter space. We also argue that in
the limit of high Fe2+ concentration at the tetrahedral positions a description in
terms of a two-band model is essential. The two eg orbitals and the hopping
between them play a crucial role in stabilizing the ferromagnetic phase in this
limit. The case when Fe is doped simultaneously at both the tetrahedral and
the octahedral position is also discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Diluted magnetic semiconductors (DMSs) are currently being intensively studied in connection
with their possible application for spintronic devices [1]. Special attention has been devoted
to the III–V semiconductors [1, 2] which develop long range ferromagnetic order with Curie
temperatures of about 100 K upon doping with a low concentration of magnetic impurities like
Mn. Since spintronic applications would become widely accessible if ferromagnetism was
achieved at room temperature, there is a continuous search for new materials with high Curie
temperatures.

In a very recent experiment [3], Risbud and co-authors tried to dope Fe into ZnGa2O4

by preparing a solid solution [ZnGa2O4]1−x [Fe3O4]x of ZnGa2O4 and Fe3O4 with x = 0.05,
0.10 and 0.15. Long-range magnetic order was observed in all three samples with Curie
temperatures up to 200 K as well as ferromagnetic hysteresis of the magnetization at low
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temperatures. Interestingly, the saturation magnetic moment, which should be 4 µB per Fe3O4

unit, is about 1 µB instead. This has been interpreted [3] as an indication of a certain fraction
of Fe not contributing to the ferromagnetic long range order (LRO). These authors have also
performed Mossbauer experiments in order to ascertain the oxidation states of Fe in the host
semiconductor ZnGa2O4. For an x = 0.15 doped sample they observed the presence of only
Fe3+ states with some of them displaying a paramagnetic signal (doublet) and the rest showing
magnetically ordered Fe3+. We note at this point that in the context of Fe3O4 it has already
been argued that above the Verwey transition [4] an Fe2+ cation can be viewed as an Fe3+ ion
plus a delocalized electron. We deliberate further on this point in section 7.

Motivated by these observations and the difference between this system and the III–V
semiconductors, we investigate in what follows the underlying mechanism of the long range
ordering of Fe ions in doped ZnGa2O4 considering various possible limits of the problem in
terms of an effective model which is based on the band-structure calculation of the system.
The band-structure calculation, which will be discussed in the next section, gives information
about the position and nature of the Fe bands and their hybridization with the bands of the
parent compound as well as the active bands at the Fermi level, which will help us to construct
an effective Hamiltonian for the system. The ground state magnetic phase diagrams of this
effective Hamiltonian are then calculated using the parameters derived from the band-structure
calculation.

The host semiconductor ZnGa2O4 has a spinel crystal structure AB2O4 with two cation
sites: Zn2+ (A) in a tetrahedral co-ordination and Ga3+ (B) in an octahedral co-ordination
of oxygens. Fe3O4 has, on the other hand, an inverse spinel structure with a chemical
composition Fe3+

A [Fe2+, Fe3+]BO2−
4 . When Fe is substituted in ZnGa2O4 via the solid solution

[ZnGa2O4]1−x[Fe3O4]x , it can either replace Zn in the tetrahedral position or Ga in the
octahedral position or both. Here we will consider the following two cases: (i) all substituted
Fe are in tetrahedral positions and (ii) all substituted Fe are in octahedral positions. We also
assume the most general case, namely, that Fe can have both Fe3+ and Fe2+ oxidation states
irrespective of whether it is in tetrahedral or octahedral position and that it is always in a high
spin state with spin = 5/2 and 2 respectively1. We will briefly outline the case where Fe ions
are in both tetrahedral and octahedral positions at the end.

The paper is organized as follows. In section 2 we discuss our band-structure calculations
and present the density of states for the case of Fe doped into tetrahedral positions in ZnGa2O4.
Out of these results we get insight about the active orbitals at the Fermi level which are relevant
for our model Hamiltonian. In section 3 we investigate three different limits of the case with
Fe occupying tetrahedral positions and motivate a model similar to double exchange for this
system. In section 4 we present the model Hamiltonian and calculate the magnetic phase
diagram. Section 5 deals with the effect of the Coulomb correlation on the phase diagram
results. In section 6 we study the case of Fe doping in the octahedral positions and finally in the
last section we discuss our results and make a comparison with the experimental observations.

2. Band-structure calculations

ZnGa2O4 is a direct bandgap semiconductor with an energy gap of about 4.1 eV [5, 6]. Previous
band-structure calculations [7] for ZnGa2O4 showed that the valence states right below the
Fermi level are mostly of oxygen character with the contribution of Zn and Ga being very
small. In order to investigate the effect of the doping of Fe in the band structure of ZnGa2O4,
we considered modified unit cells of ZnGa2O4 with different Fe contents, i.e. Fe substituting

1 In the spinel structure Fe usually acquires the high spin state.



Ferromagnetism in the Fe-substituted spinel semiconductor ZnGa2O4 7419

-8

-6

-4

-2

 0

 2

 4

 6

 8

-5 -4 -3 -2 -1  0  1  2

D
O

S
(s

ta
te

s/
eV

/s
pi

n)

Energy(eV)

Zn
Fe
Ga
O1
O2

SPIN DOWN

SPIN UP(a)

-8

-6

-4

-2

 0

 2

 4

 6

 8

-4 -3 -2 -1  0  1  2

D
O

S
(s

ta
te

s/
eV

/s
pi

n)

Energy(eV)

eg
t2gSPIN UP

SPIN DOWN

(b)

Figure 1. Majority (up) and minority (down) spin density of states for Fe doped into the tetrahedral
Zn position in ZnGa2O4. (a) The total density of states and (b) the partial Fe–d density of states
as explained in the text. Here O1 and O2 denote two nonequivalent oxygen atoms of the modified
unit cell.

Zn in tetrahedral sites in an Fe:Zn ratio 1:2 (50% doping of Fe) and Fe substituting Ga in
octahedral sites in an Fe:Ga ratio 1:4 (25% doping of Fe). These percentage dopings of Fe in
Zn (or A) sites and in Ga (or B) sites are close to the experimental ones with x = 0.15 in the
[ZnGa2O4]1−x[Fe3O4]x formula unit which are 45% when Fe substitutes Zn only and 22.5%
when Fe substitutes Ga only. Here we will illustrate the tetrahedral substitution.

ZnGa2O4 crystallizes in a normal spinel structure with space group Fd 3̄m and the primitive
(rhombohedral) unit cell contains two formula units. In order to substitute Fe in one of the Zn
positions, one has to make the two Zn positions in the unit cell nonequivalent. One maximal
subgroup of Fd 3̄m which allows for this substitution is F 4̄3m. In this new space group we
have in addition to Zn, Fe and Ga two nonequivalent oxygen positions O1 and O2. Fe and Zn
are surrounded by O1 and O2 ions respectively in a tetrahedral environment, whereas Ga is in
an octahedral surrounding with three O1 and three O2 atoms [8].

We have performed ab initio density functional theory calculations for Fe doped ZnGa2O4

in the F 4̄3m symmetry within the local spin density approximation (LSDA) using the linearized
augmented plane waves (LAPWs) as basis set [9]. In figure 1 we present the spin polarized
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density of states (DOS) for Fe doped ZnGa2O4 where Fe substitutes 50% of tetrahedral Zn
atoms in the unit cell as described above. Total densities of states of majority (up) and minority
(down) spin states for all the atoms are given in figure 1(a) while in figure 1(b) we show the
partial density of states for Fe d states projected into t2g and eg symmetries in both spin
directions. We observe that the Fe d states appear to be mainly located in the bandgap of the
host semiconductor together with a non-negligible contribution of O1 p states while Zn, Ga
and O2 contributions are well down into the valence band and are negligible at the Fermi level
(figure 1(a)). The Fe DOS shows the expected eg–t2g splitting for a transition metal ion in a
tetrahedral crystal field. The majority spin (spin up) eg and t2g states are completely filled and
appear far below the Fermi level whereas the minority spin (spin down) eg states are partially
filled and are at the Fermi level (figure 1(b)). It is important to note that the spin exchange
splitting (∼2.6 eV) is much larger than the crystal field splitting (∼0.5 eV) in this system.
These observations of the band structure calculation are crucial to build up an effective model
for this system, as we will see below.

3. Model: Fe in tetrahedral position

Based on the electronic structure calculations described above for the doped system, we now
motivate a possible mechanism for the ferromagnetic LRO observed in Fe doped ZnGa2O4. We
note at this point that the Fe concentration in this system is not very low as for x = 0.15 in the
[ZnGa2O4]1−x[Fe3O4]x formula unit the Fe:Zn ratio calculated from the nominal composition
is 1:1.9 (3x :1 − x) or close to 1:2 though Risbud et al reported to have observed a Fe:Zn
ratio of 1:3 [3]. Hence the system is not likely to be a candidate for description in terms of a
Kondo impurity model [10]. It is rather much more reasonable to assume that the electrons hop
between doped sites via mainly the oxygen orbitals in the same way as in the double exchange
mechanism in the manganites [11]. We would like to note here that in the case of manganites
each Mn ion is surrounded by oxygen atoms in an octahedral environment and these octahedra
are corner shared. The double-exchange mechanism then operates through a path of the type
Mn–O–Mn giving rise to a ferromagnetic order among the Mn spins. In the present system we
observe that for the doping considered in our band structure calculation there exist paths of the
type Fe–O1–O1–Fe, where O1 is one of the two nonequivalent oxygens which surrounds Fe
in a tetrahedral environment as described in the previous section. This assumption of electron
transport via oxygen orbitals is supported by our band-structure calculations, where we see
that there exists a small but finite hybridization between the doped Fe and O1 at the Fermi level
(see figure 1(a)). Note that the contribution of Zn, Ga and O2 is negligible at the Fermi level
and hence these are very unlikely to take part in the electronic transport.

A double-exchange-like mechanism mediating ferromagnetism has been proposed and is
being seriously investigated lately for various diluted magnetic semiconductors [12–14]. First
principles calculations have also been seen to support such a mechanism for ferromagnetic
order in some of these systems like ZnO based DMS, Ga(Mn)As [12, 15]. Indeed, without
such a long range transport of electrons, the ferromagnetic LRO (long range order) observed in
these systems would be difficult to account for, a view shared in other theoretical analyses [16]
of LRO in DMS. We would like to emphasize though that the Fe doped ZnGa2O4 that we are
considering here is not strictly a DMS as the doping level is quite high.

Let us consider first the case where all the doped Fe are in tetrahedral positions. In
figure 2 we draw a schematic energy level diagram of Fe 3d orbitals together with the valence
and conduction bands of the host semiconductor. We discuss in the following three limits of
the problem: (i) all or most of the Fe are Fe3+, (ii) Fe is in both Fe2+ and Fe3+ oxidation states
and (iii) the limit of high Fe2+ concentration.
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Figure 2. Schematic energy level diagram showing the 3d states of doped Fe in the bandgap of the
ZnGa2O4 semiconductor. (a) Fe2+ and (b) Fe3+ in a tetrahedral crystal field. VB and CB denote
the valence band and conduction band of the semiconductor respectively.

3.1. High Fe3+ concentration limit

In the situation when neighbouring doped tetrahedral sites are all Fe3+, there are five electrons
of the same spin in each site due to Hund’s rule. If the spins at these neighbouring doped sites
are ferromagnetically aligned then hopping of an electron between sites is blocked by the Pauli
principle. If instead they are antiferromagnetically aligned the system gains superexchange
energy by a virtual process of electron transfer between the Fe ions. Therefore, when all
Fe ions are in an Fe3+ state, an antiferromagnetic (AFM) alignment of spins is energetically
preferred.

3.2. Mixed Fe2+ and Fe3+

Let us examine now the case where both Fe2+ and Fe3+ are present in neighbouring sites
(see figure 3). If the five electrons in Fe2+ (all aligned) are in an antiferromagnetic
configuration with the spins of the neighbouring Fe3+ (figure 3(a)), then an electron in
Fe2+ has to pay an amount of energy equal to the Hund’s coupling (JH) in order to hop
from one Fe2+ site to a neighbouring Fe3+ site. In the limit of large JH this is practically
forbidden and the system will try to gain the superexchange energy, approximately ∼ t2

JH
,

where t is the appropriate hopping integral between the relevant orbitals2. In contrast,
in a ferromagnetic arrangement (figure 3(b)) the minority spin electron in Fe2+ can move
to a neighbouring Fe3+ site without paying extra energy and the system gains kinetic
energy (KE) in this process. From the above discussion, it is evident that when JH is large
the system will prefer to be in the ferromagnetic state rather than the antiferromagnetic
one. If JH is moderate then all these energy scales are comparable and the competition
between kinetic energy, superexchange energy (SE) and JH will decide the phase boundaries.

2 Presence of doubly occupied eg orbitals in both initial and final states ensures that the intra-orbital Coulomb
repulsion (U ) contributes to the total energy in both states.
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Figure 3. Electron hopping between Fe2+ and Fe3+ at neighbouring tetrahedral doped sites with
(a) antiferromagnetic alignment of spins and (b) ferromagnetic alignment of spins.

It is useful to make a note at this point that the Fe2+ ion with three electrons in its eg

orbitals is likely to be Jahn–Teller (JT) active, i.e. the doubly occupied orbital stabilizes over
the singly occupied one, whereas Fe3+ with two electrons in the two eg orbitals is not JT active.
In this case one can then work with only one eg orbital for Fe2+ (the Jahn–Teller stabilized
one) with electrons hopping through this orbital. The mechanism of magnetic exchange due to
electron delocalization goes through without loss of generality as outlined above (with possible
reduction in the overall eg bandwidth, which can be scaled away). The third eg electron in the
Fe2+ site and the corresponding eg orbital can be ignored. But as we will see in the following
this single-orbital model is not sufficient to describe the case where all (or most of) the doped
Fe are in an Fe2+ state. One has then to take into account both eg orbitals and the hopping
among them.
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3.3. High Fe2+ concentration limit

Here we consider two neighbouring tetrahedral Fe ions, both in Fe2+ configuration. Since
each of them has three electrons in their eg orbitals, one eg orbital is full and the other has one
electron. Therefore the only way electrons can hop is via this half-filled orbital. In this case,
there are several possibilities arising from the relative values of the JT stabilization energy (�)
and the bandwidth (W ) of the eg bands (� � JH for the system under consideration). Consider
the situation when � > W . In this case ferromagnetism is inhibited if the hopping matrix is
diagonal. If, however, there exists off-diagonal hopping t12 (which, in general, depends on
the orbitals involved and the symmetry of the lattice), then ferromagnetism could stabilize via
a virtual hopping with a gain of ferromagnetic exchange energy (t12)2/�. This FM phase is
not driven by KE as in the double-exchange mechanism. However, there is also a competing
AFM phase that gains superexchange energy of order t2/(� + JH).

In the limit � < W , the FM state is driven by the double-exchange mechanism as in the
Fe2+–Fe3+ mixed configuration. The FM state is stabilized by the KE of the eg electrons since
the superexchange energies are less than the KE. The underlying ground state, though, will be
different when only diagonal hopping is allowed. In this case, in order to gain the KE, the Fe2+

ions will remain in a cooperative, staggered JT distorted arrangement which costs additional
energy which depends on � and may not be stable if AFM superexchange energy is larger3.

In figure 4 we show the situation arising in the case � = 0 with the eg orbitals in
a cubic environment and nonzero overlap among them. One electron (either up or down)
from the doubly occupied eg orbital of Fe2+ on one site can always move to the singly
occupied eg orbital on the next Fe2+ site. In the case of antiferromagnetic alignment (shown
in figure 4(a)) the hopping of an electron from one Fe2+ site to the next costs JH amount of
energy. The superexchange mechanism through virtual hopping is the only energy gain. In
the ferromagnetic state (figure 4(b)), however, the initial and final states are degenerate and
the system gains kinetic energy due to resonance. It is also evident that the physics for large
Fe2+ concentration is different from the low Fe2+ concentration limit. In the low concentration
limit, an effective single-orbital model captures the physical situation well, while in the high
concentration limit, two bands are crucial for its understanding. This situation is somewhat
reminiscent of the manganites where on the electron-doped side (hole concentration x > 0.5)
the two eg orbitals and the hopping between them play a crucial role in determining [17] the
competition between the different magnetic phases, whereas on the hole-doped side (x < 0.5)
a model with only the Jahn–Teller-stabilized single orbital is adequate.

4. Hamiltonian

Based on the above discussion we write down the following effective Hamiltonian for Fe-doped
ZnGa2O4 assuming a cubic environment:

H = H0 + Hint

H0 =
∑

〈i j〉,σ,α,β

tαβ

i j c†
iασ c jβσ − JH

∑

i

Siσi + JAF

∑

〈i j〉
Si S j

Hint = U
∑

iα

niα↑niα↓ + U ′ ∑

i,α �=β

niαniβ .

(1)

Here we treat the t2g electrons as localized and eg as itinerant because the density of states
(figure 1) clearly shows that the eg down band is at the Fermi level, whereas the fully filled

3 Such orbitally ordered states may be broken easily by defects in these disordered systems and long range transfer
of charge carriers inhibited.
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Figure 4. Electron hopping in (a) antiferromagnetic phase and (b) ferromagnetic phase when both
neighbouring doped tetrahedral sites are Fe2+.

t2g up band is well below. Electronic transport, therefore, involves the electrons in the eg

band primarily. The t2g bands are well removed from the Fermi level and the eg–t2g overlap is
negligibly small [19]. The t2g electrons, under these conditions, provide a localized magnetic
background, to which the itinerant eg electrons are coupled through the Hund’s exchange.

The first term in H0 describes the kinetic energy with tαβ

i j being the anisotropic hopping
integral between two eg orbitals [19–21]. Here i and j are site indices and α, β = 1, 2 are eg

orbital indices. The second term is the Hund’s coupling term between the localized t2g spins and
the itinerant eg spins and the last term represents the antiferromagnetic superexchangecoupling
between neighbouring t2g spins. The first and second terms in Hint define the onsite intra- and
inter-orbital Coulomb repulsion with U and U ′ being the corresponding interaction strengths.
In the half-filled situation when we have all Fe in Fe3+ states the ferromagnetic phase is blocked
by the Pauli principle and an antiferromagnetic phase is favoured as we discussed above. The
third term in H0 representing the antiferromagnetic superexchange satisfies this limit.
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First we discuss the model without considering the Coulomb correlation terms given by
Hint (equation (1)). The correlation and their effects will be discussed later in detail. We treat
the t2g spin subsystem with a magnitude 3/2 semiclassically, as is also the standard practice
in the case of manganites [11]. We do not, however, make the further assumption prevalent in
manganite and DMS literature, i.e. JH → ∞. Indeed, such an assumption would preclude the
presence of an Fe2+ state. JH in the foregoing is treated as a parameter and its value, as gleaned
from the spin splitting observed in the band-structure calculations, is typically large (about
2.6 eV). Assuming an uncanted homogeneous ground state, we choose Si = S0 exp(iQ · ri )

where S0 = 3/2 and Q = (0, 0, 0) for the ferromagnetic phase and Q = (π, π, π) for the
antiferromagnetic phase. With this choice the first two terms of the Hamiltonian H0 (1) reduce
to

H1 =
∑

ε
αβ

k c†
kασ ckβσ − JH S0

∑
c†

kα↑ck+Qα↑ + JH S0

∑
c†

kα↓ck+Qα↓ (2)

ε11
k = −2t (cos kx + cos ky)

ε12
k = ε21

k = − 2√
3

t (cos kx − cos ky)

ε22
k = − 2

3 t (cos kx + cos ky) − 8
3 t cos kz.

(3)

Here equation (1) corresponds to dx2−y2 and equation (2) to d3z2−r2 orbital and t is
the magnitude of the hopping integral between two neighbouring dx2−y2 orbitals in the x, y
direction. The superexchange contribution to the Hamiltonian is given by

ESE = JAFS2
0

2
(2 cos θxy + cos θz) (4)

where θxy and θz are the angles between neighbouring spins in the xy plane and in the
z direction respectively. θxy = θz = 0 for the ferromagnetic phase and θxy = θz = π in
the antiferromagnetic phase. These two angles could be different from π or 0 in general and
allow for canting.

We diagonalize the Hamiltonian (equation (2)) at each k point on a finite momentum grid
and calculate the ground state energy for ferromagnetic and antiferromagnetic states in their
uncanted spin configurations. The magnetic structure with minimum ground state energy is
determined for each set of parameters (y, JH and JAF); the two eg orbitals are taken to be
degenerate currently (� = 0). Here y is the eg electron concentration, y = 0.5 corresponds
to the limit where all Fe ions are in their Fe3+ state and y = 0.75 corresponds to all Fe in
the Fe2+ state. In figure 5 we show the ground state phase diagram in the y–JHS0/t plane
with JAFS2

0/t = 0.05Note 4 as an illustration. However, this value of JAF S2
0/t is varied in a

wide range to obtain the phase diagram given in figure 6. In the above figure we see that at
y = 0.5 where all Fe ions are in their Fe3+ state the system is antiferromagnetic at all values
of the Hund’s coupling JH as we expected since the ferromagnetic state is blocked by the
Pauli exclusion principle in this limit. As we increase the concentration of Fe2+, the electron
concentration increases in the down spin band, which can hop from site to site, and the system
gains kinetic energy. Due to the competition, modulated by the value of JH, between the kinetic
energy which favours an FM configuration and superexchange energy which favours an AFM
state, a ferromagnetic phase is indeed stabilized over the antiferromagnetic one for moderate to
high concentration of Fe2+. As the value of JH is increased, the ferromagnetic phase becomes
broader and at very large JH the ferromagnetic region becomes almost independent of JH.

In figure 6 we present the ground state phase diagram in the y–JAFS0/t plane at a
typical value of JH S0/t = 25.0 which is again estimated from the electronic structure

4 A typical value estimated from the Hund’s coupling strength and the relevant bandwidth involved in the band-
structure calculations.



7426 T Maitra and R Valentı́

0.5 0.55 0.6 0.65 0.7 0.75
y

5

15

25

35

45

J H
S 0

/t

FMAFM

JAFS0

2
/t=0.05

Figure 5. Ground state phase diagram of the Hamiltonian (U = U ′ = 0) in the y–JHS0/t plane
where y is the eg electron concentration and with JAF S2

0/t = 0.05.

0.5 0.55 0.6 0.65 0.7 0.75
y

0

0.05

0.1

0.15

0.2

J A
FS

02
/t

JHS0/t=25.0

AFM

FM
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0/t plane considering

both eg orbitals and the hopping among them in the model in the limit U = U ′ = 0.

calculation described above. Note that there exists a wide region in parameter space where the
ferromagnetic phase is stabilized.

In the limit of non-degenerate eg orbitals, we examine the situation for JH > � > W . As
argued earlier, there exists the possibility of a ferromagnetic phase via double exchange here
too in the region of mixed Fe2+–Fe3+ shown in figure 7. In this case, the AFM state reappears as
the Fe2+ concentration increases because of reduced effective hopping. The phase diagram is
symmetric about y = 0.625 and the regions of stability of these phases are nearly independent
of � for � > W as expected. The rather interesting possibilities involving orbital order have
not been discussed here. The orbital order can be generated by the anisotropic hopping as well
as the JT distortion. It can also be enhanced by the Coulomb correlations [17].
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5. Coulomb interaction

The onsite intra- and inter-orbital Coulomb interaction terms given by Hint (in equation (1))
are treated in the mean-field theory. Neglecting the fluctuation effects, we write n̂i1σ n̂i2σ ′ =
〈n̂1σ 〉n̂i2σ ′ + 〈n̂2σ ′ 〉n̂i1σ − 〈n̂1σ 〉〈n̂2σ ′ 〉, the last term preventing double counting. The averages
〈n̂1↑〉, 〈n̂1↓〉, 〈n̂2↑〉, and 〈n̂1↓〉 are calculated from the eigenvectors iteratively through successive
diagonalization of the Hamiltonian. Self-consistency has been achieved when all the averages
〈n̂i,σ,α〉 and the ground state energy converge to within 0.01% or less.

It is well known [11, 22] that in the large JH limit the Coulomb repulsion U between up
and down spin electrons in the same orbital is ineffective in the mean-field theory. In this limit
doubly occupied orbitals are energetically costly and generally avoided. However, in the case
of Fe2+, one of the eg orbitals has to be doubly occupied. In this case, in the mean-field type
argument, a replacement of JH by JH + U in the doubly occupied orbitals takes care [22] of
this repulsion. One then absorbs U in the value of JH appropriately and does not consider it
explicitly. In the following, therefore, we keep the value of U to be zero. There is, however, a
strong effect of the inter-orbital Coulomb interaction (U ′) on the phase diagram as we discuss
in what follows.

In figure 8 we present the effect of inter-orbital Coulomb interaction (U ′) on the ground
state magnetic phase diagram for typical values of JH S0/t and JAF S2

0/t , keeping � = 0. As y
increases, the FM phase appears as in the previous figures. At large U ′ and when almost all the
Fe ions are in the +2 valence state, the AFM phase reappears at the right top corner of figure 8.
In the presence of inter-orbital Coulomb interaction the energies in the high Fe2+ region are
primarily dominated by localized exchange interactions. The competing interactions now have

the energy scales − t2
12

U ′ and − t2
22
JH

. In the limit U ′ > JH (JH + U , if U is considered explicitly),
the second term would provide extra gain in energy and the AFM phase should stabilize. A
transition from FM → AFM will therefore occur as U ′ exceeds JH for y = 0.75. As y reduces
from 0.75, a larger U ′ is required for the transition, leading to the region of AFM at the top
right-hand corner in figure 8 as shown.
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Figure 8. Phase diagram of the Hamiltonian for Fe in a tetrahedral environment showing the effect
of U ′ (see equation (1)) on the ferromagnetic and antiferromagnetic phases.

6. Fe in octahedral position

So far we have investigated the case where the doped Fe ions are in the tetrahedral Zn positions
of ZnGa2O4 with Fe2+ and Fe3+ valence states. Let us now examine the case when Fe is doped
into octahedral Ga positions. In the octahedral crystal field the energy levels of Fe will be
split into a triply degenerate set of t2g levels and a doubly degenerate set of eg levels. The t2g

levels in this case have lower energy than the eg levels, contrary to the tetrahedral case. With
this arrangement of orbitals, the extra (sixth) electron in Fe2+ will occupy the t2g level. The
preliminary band structure results with 25% Fe substitution in the Ga sites [18] corroborate this
scenario. The overlap integrals between the t2g orbitals are calculated as usual from the Slater–
Koster integrals [19]. In this scenario, we consider the t2g electron as itinerant for reasons
similar to the ones discussed in the case of Fe in the tetrahedral position. We, therefore, use the
overlap integrals between the t2g orbitals in the kinetic energy term of Hamiltonian equation (2).
We note at this point that in the spinel crystal structure of ZnGa2O4 these octahedral centres,
occupied by the Ga atoms, are arranged in a tetrahedral fashion among themselves and hence
are geometrically frustrated. We have not considered this geometrical frustration in the present
calculation because the experimentally observed ratio of Fe to Ga is fairly small (1:6). The
Fe atoms are assumed to be arranged in a cubic environment for the present calculation and
hence there is no frustration.

In the kinetic energy term of the Hamiltonian given by equation (1) the orbital indices α

and β now take the values 1, 2 and 3 which represent xy, yz and zx orbitals respectively. This
Hamiltonian will reduce in k-space to the form of equation (2) as in the case of tetrahedral
doping except from the fact that now ε

αβ

k is a 3 × 3 matrix with the elements given by

ε11
k = −2t ′(cos kx + cos ky)

ε22
k = −2t ′(cos ky + cos kz)

ε33
k = −2t ′(cos kx + cos kz).

(5)

Here t ′ is the magnitude of the hopping integral between the neighbouring π-bonded
xy orbitals in the x, y direction. Note that the inter-orbital overlaps turn out to be zero in
this case [19]. Following similar procedures outlined in the tetrahedral case we calculate the
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Figure 9. Phase diagram for the ground state of the Hamiltonian (with U = U ′ = 0) for Fe in an
octahedral environment in the y–JHS0/t ′ plane with JAF S2

0/t ′ = 0.05. In the inset we show the
shift of the AFM–FM phase boundary compared to that of the tetrahedral case (the x-axis is rescaled
such that y′ = 0 corresponds to all Fe3+ and y′ = 1 to all Fe2+ in order to make a comparison).

ground state magnetic phase diagram and observe that (as shown below) the ferromagnetic
phase is stable in a wide range of parameter space in this case as well. However, we have not
considered the Coulomb interactions (Hint in equation (1)) in the present calculation of the
phase diagram.

In figure 9 we present the ground state phase diagram in the plane y–JHS0/t ′ with a fixed
value of JAF S2

0/t ′ = 0.05. The three t2g orbitals have been taken as degenerate (i.e., � = 0)
and y is the electron concentration in the t2g levels ranging from y = 1/2 (corresponding to
all Fe3+) to y = 2/3 (all Fe2+, four electrons in t2g). A comparison with the earlier phase
diagram, for Fe in a tetrahedral position (figure 5), is shown in the inset. We observe a shift
of the AFM–FM phase boundary towards higher concentration of Fe2+ in the octahedral case.
The absence of off-diagonal hopping among the t2g orbitals (equation (5)) reduces the effective
KE gain in the double-exchange mechanism. This, in turn, makes the FM phase less stable
compared to the tetrahedral case. The antiferromagnetic phase, therefore, stabilizes over a
wider region in the phase diagram.

Nevertheless, we still observe a stable ferromagnetic phase in a moderate to high range
of doping by Fe2+ ions. Finite JT splitting of t2g orbitals may have interesting effects on the
stability of the ferromagnetic phase in the high Fe2+ limit. Since the inter-orbital hopping
is zero, even a small but finite JT splitting may induce a cooperative staggered JT distorted
order of the Fe2+ ions in the ferromagnetic phase to maximize the KE. This would make the
ferromagnetic phase increasingly destabilized against the AFM phase, depending on the value
of �, as well as against defects and other impurities present in the system (see footnote 3).
Coulomb correlations, particularly the inter-orbital Coulomb correlation (U ′), is expected to
have a strong effect in stabilizing the AFM phase in this case due to the reduced mobility
of the carriers in the t2g orbitals as argued above. Following the arguments in section 5,
the AFM phase in the top right corner in figure 8 is expected to appear at a lower value
of U ′ now.
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7. Discussion

We observe from the above study of Fe doped ZnGa2O4 that ferromagnetism could result
from a delicate competition between double exchange, favouring the FM spin order, and
superexchange, favouring AFM order, when both Fe2+ and Fe3+ valence states are present.
Though the present experimental situation in this system does not make the limit of all
Fe2+ in tetrahedral positions a very relevant one, there is nevertheless a rich underlying
physics connected with the interplay between dominant Jahn–Teller, double-exchange and
superexchange interactions in this limit. Finally, a special note is in order for the case where
the doped Fe ions go to both tetrahedral and octahedral environments replacing Zn and Ga ions
respectively. In this mixed situation, it is necessary to first find out the extended and localized
states from a careful density functional calculation. As the eg–t2g orbital overlap is negligible,
it could be possible that in the mixed situation the double-exchange mechanism would operate
within the Fe ions that belong entirely to one kind of crystalline environment (i.e. either in the
tetrahedral or in the octahedral positions), and hence only a fraction of the Fe that are doped
into the system would take part in the ferromagnetic long range order [3]. However, the model
is expected to work as long as there are mobile electrons coupled to a relatively localized spin
background.

We have been discussing in this work the carrier-mediated ferromagnetism which is
believed to explain the magnetic properties of various dilute magnetic semiconductors with
available free charge carriers [13, 14]. For relatively localized systems with no free carriers
other alternative mechanisms such as that of the bound magnetic polaron model have also
been proposed [23, 24]. One such example is Ga(Mn)N, where it has been suggested that the
Mn ions are in d5 configuration plus a localized hole and this localized hole forms a singlet
with a Mn d electron (Zhang–Rice polaron) which then moves through the Mn sublattice and
mediates ferromagnetic order [25, 26].

The system we consider in this work is different from other III–IV or II–VI semiconductors
in some respects. First of all the doping concentration (50% or 25%) is quite high compared to,
for example, the 6% doping in Ga(Mn)N. Secondly there is a possibility of Fe having a mixed
valence state of Fe2+/Fe3+. Thirdly the existence of two kinds of crystalline environment to
which Fe can be doped is not present in the known DMS semiconductors.

DMS systems like Ga(Mn)As have indeed shown dependence of Tc on the so-called antisite
defects. Long range order in DMS systems is known to show sensitivity to disorder as well.
But in the present context, disorder (which we did not consider) may not be that crucial for the
underlying mechanism of magnetism proposed. Unlike the usual DMS materials, the doping
is fairly high to be in the impurity dominated regime. The disorder may affect the values of
exchange interaction and electron mobility, thereby shifting the phase boundaries slightly, but
the overall topology of the ground state phase diagram will remain unaffected. Therefore, we
believe that, at least to a first approximation, effects of disorder could be neglected.

Finally, concerning the model (equation (1)), there are also very interesting issues related
to it like the possibility of phase separation and canted spin structures, possible orbital ordering
and low dimensional spin orders which have not been investigated here.

8. Conclusion

In conclusion, based on the band structure results we have presented an effective model for
magnetism in Fe-doped ZnGa2O4 which predicts a stable ferromagnetic phase when both Fe2+

and Fe3+ valence states are present. If only Fe3+ is present—as reported in the Mossbauer
spectroscopy [3]—it is not possible to get ferromagnetism via this model; an insulating AFM
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state would have been the most likely ground state. As the system is not very dilute and the
transition temperature is quite high, it is likely that ferromagnetism in this system is driven
by the kinetic energy of mobile electrons via double exchange rather than interaction between
localized impurities. A high degree of delocalization of the extra electron in Fe2+ could also
explain the observation of only Fe3+ states in the Mossbauer experiments. More experiments
are needed to be done in order to unambiguously detect the states of Fe in ZnGa2O4. A study
of the ground states for a range of doping concentrations would be very useful. Photoemission
experiments backed by detailed first principles calculations are also indispensable to delineate
the relevant orbitals that participate in the double-exchange mechanism.
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